
TEACHER TRAINING IN COMPUTATIONAL THINKING.
TEACHING GUIDE

Funded by:

Tools, reflections, learnings and practical
examples resulting from the PECOFIM project

pecofim.udg.edu

http://pecofim.udg.edu
http://udigital.udg.edu/
http://crecim.cat/es/
https://www.udg.edu/ca/grupsrecerca/GRECA

“Teacher training in Computational Thinking. Teaching Guide” is a document resulting from the PECOFIM
project [2015 ARMIF 00031], funded in the call Ajuts de Recerca per a la Millora en la Formació Inicial de
Mestres, granted by the Agència de Gestió d’Ajuts de Recerca (AGAUR).

It has been written by [Estebanell, M.; López, V.; Peracaula, M.; Simarro, C.; Cornellà, P.; Couso, D.;
González, J.; Alsina, A.; Badillo, E.; Heras, R.].
Assisted by: [Freixenet, J.; Muntaner, E.; Sabaté, F.; Serrats, L.; Córdoba, P.; Garcia, N.; Niell, M.;
Bertran, A.; Bosch, D.]
Design and layout: [Ferrarons, A.]
Translation and proofreading: [Weiss, M.] (english), [Bosch, D.] (spanish)

This document is distributed under a CreativeCommons Attribution-NonCommercial-NoDerivatives 4.0
International license. http://creativecommons.org/licenses/by-nc-nd/4.0/

Most of the images used in the document are our own or have been obtained under a Creative Commons
license. In the remaining cases, the licenses have been detailed at the foot-image.

Credit as:
[Estebanell, M.; López, V.; Peracaula, M.; Simarro, C.; Cornellà, P.; Couso, D.; González, J.; Alsina,
A.; Badillo, E.; Heras, R.] (2018). Pensament Computacional en la formació de mestres. Guia didàctica.
Girona: Servei de Publicacions UdG.

https://creativecommons.org/licenses/by-nc-nd/4.0/

4

TEACHER TRAINING IN COMPUTATIONAL
THINKING
Tools, reflections, learnings and practical examples resulting from the PECOFIM project

Computational thinking, understood as the set of strategies and reasoning
required for problem solving and designing systematic solutions, in much
the same way as a machine or computer operates, is increasingly present in
the educational world. Nowadays, programming activities and educational
robots are present both in formal education and in multiple non-formal spaces
(campuses, code clubs, museums, etc.), while educational projects and
networks promoting this type of activities are emerging everywhere. At the same
time, school curricula have begun to include programming and educational
robotics as proposals to work on problem solving and help to develop digital
and/or mathematical skills. What, though, are the necessary strategies and
capabilities that are encompassed in computational thinking (CT)? How should
computational thinking be conceived as school content? What can universities,
responsible for the initial training of the teachers, do to promote the necessary
teaching competence in this field?
This document, resulting from the PECOFIM project, aims to address these
different issues.
The PECOFIM project (Computational Thinking in the Initial Teacher Training
Process) has been funded by the Research Assistance Program for Improvement
in Initial Teacher Training (ARMIF), modality 2, of the Agency for Management
of University Grants and Research (AGAUR) -resolution of concession of June
29, 2016, published on June 30, 2016. This project has involved university
professors from the University of Girona and the Autonomous University of
Barcelona, as well as teachers from different Catalan schools with extensive
experience in carrying out activities related to programming and robotics in
educational contexts.
This document shares a didactic framework encompassing computational
thinking and the role it can play in school as an object of teaching and learning.

Based on practical resources and examples, we hope to contribute to the training
of teachers in computational thinking, addressing the what, how and why of
computational thinking in school.

Project website: pecofim.udg.edu

https://pecofim.wixsite.com/pecofim

5

1. What do we mean by Computational Thinking? 	 												 6

2. What is the meaning of Computational Thinking in school? 			 							 7

2.1. Beyond computational concepts: Computational thinking understood as a set of practices and perspectives							 7	
2.2. Beyond digital support: Computational thinking understood as a methodology for solving everyday problems with and without a computer			 8
2.3. Beyond computing: Computational thinking understood as a cornerstone in the emerging paradigma STE(A)M						 9	
	

3. What aspects of Computational Thinking need to be promoted and evaluated?									 10

3.1. Characteristic processes of Computational Thinking		 										 13	
3.2. Strategies for solving computational problems						 							 18
3.3. Transversal skills in computational contexts													 23

4. How can we approach Computational Thinking in teacher training?		 							 28

What you will find in this document?

66

1. What do we mean by
Computational Thinking?

In 1980, Seymour Papert introduced the term “computational thinking” in his
book “Mindstorms: Children, computers, and powerful ideas” (translated into
Spanish as “Desafío a la mente”). In 1996, the same Papert, presented the idea
in the context of mathematical learning in his article “An Exploration in the Space
of Mathematics Education”, but it was not until 2006 that Jeannette M. Wing
popularized the concept of computational thinking in the field of educational and
psychological research, publishing an article in the journal “Communications of
the ACM” (2006). Specifically, Wing explains:

“Computational thinking as solving problems, designing systems
and understanding human behaviour by drawing on the concepts
fundamental to computer science.” (Wing, 2006: p 33).

The author suggests that this way of thinking is applicable to the resolution of
diverse problems, being a fundamental skill for the whole population and not
only for computer scientists and programmers. From this perspective, she
emphasizes the need to integrate computational ideas in other disciplines, posing
solutions that could also be carried out by humans, and not just by machines.

In the ten years following Wing’s first publication, many authors have focused
their attention on the idea of computational thinking, contributing complementary
definitions. Berry (2014) and Selby & Woollard (2014) have proposed their
own definitions, which in spite of their nuances coincide in understanding
computational thinking as the ability to identify problems that can be solved in
a way similar to what a programmer would do when giving instructions to a
computer using a programming language:

•	 divide complex problems into smaller size modules,
•	 sequence long and complex processes in “steps”,
•	 organize and analyze data recognizing logical patterns,
•	 start from specific cases to arrive at abstract and generalizable situations,
•	 use algorithms to automate solutions and
•	 evaluate the validity of solutions.

TO LEARN MORE

•	 Berry, M. (2014). Computational Thinking in Primary Schools.
http://milesberry.net/2014/03/computational-thinking-in-primary-schools/

•	 Selby, C. & Woollard, J. (2014) Refining and understanding Computational Thinking.
https://eprints.soton.ac.uk/372410/1/372410UnderstdCT.pdf

•	 Wing, J. (2006). Computational Thinking.
COMMUNICATIONS OF THE ACM. Vol. 49, No. 3.
https://dl.acm.org/citation.cfm?id=1118215

http://milesberry.net/2014/03/computational-thinking-in-primary-schools/
https://eprints.soton.ac.uk/372410/1/372410UnderstdCT.pdf
https://dl.acm.org/citation.cfm?id=1118215

77

2. What is the meaning of
Computational Thinking in school?

Computer technology, closely linked to computational thinking, is not in itself
new in school. For decades, in many educational centres the “computer
classroom” has been integrated into the school ecosystem. This space, despite
having undergone changes associated with technological development, both in
terms of devices and software, has often been associated with working with the
computer (sometimes as a subject of its own, sometimes integrated in other
areas of knowledge).

In our view, the perspective of computational thinking aims to transcend the
traditional view of the computer classroom delimited in space and time,
understanding school activities related to programming and robotics as an
educational strategy for development of a 21st century competency. This should
not be an exclusive skill of professionals linked to STEM careers (Science,
Technology, Engineering and Mathematics), but of all citizens. In this context,
computational thinking in school is presented based on three premises:

•	 Beyond computational concepts: computational thinking understood as a
set of practices and perspectives.

•	 Beyond digital support: computational thinking understood as a methodology
for solving everyday problems with and without a computer.

•	 Beyond computing: computational thinking understood as a cornerstone in
the emerging paradigm STE(A)M.

2.1. Beyond computational concepts:
Computational thinking understood as a set of
practices and perspectives

While computational thinking is often associated as a set of conceptual contents
to be taught (the key concepts in learning programming, which are sequences,
loops, parallelism, events, conditionals, operators and data), different proposals
have also highlighted other dimensions of computational thinking, associated
with procedural and epistemological content. On the one hand, we talk about
computational practices including those activities related to work in computational
contexts and with computational supports. Some examples of these practices
are incrementing and iterating processes, testing and debugging of developed
programs, reusing and combining programs, and abstracting and modularizing.
Finally, we also talk about computational perspectives as the set of attitudes and
viewpoints of the discipline itself, which include aspects such as expressing,
connecting, questioning and feeling empowerment to create.

TO LEARN MORE

•	 Brennan, K. & Resnick, M. (2012), New frameworks for studying and
assessing the development of computational thinking. Proceedings
of the American Educational Research Association 2012, pp, 1-25.
http://scratched.gse.harvard.edu/ct/files/AERA2012.pdf

•	 Stephenson, C., & Barr, V. (2011). Defining Computational Thinking for K-12. CSTA:-
The Voice of K-12 .Computer Science and Its Educators, 7(2).

http://scratched.gse.harvard.edu/ct/files/AERA2012.pdf

8

2.2. Beyond digital support: Computational
thinking understood as a methodology for solving
everyday problems with and without a computer

Although computational thinking is associated with the use of digital technologies,
we propose to consider it as a way of thinking, doing and communicating that
transcends digital support, and which has multiple applications in the resolution
of problems of all kinds, particularly everyday ones.

The dimensions of Computational Thinking
according to Brennan and Resnick (2012)

Concepts

•	 Sequences
•	 Loops
•	 Parallelism
•	 Events
•	 Conditionals
•	 Operators
•	 Data

Practices

•	 Decompose problems
•	 Make incremental changes
•	 Test and correct
•	 Reuse
•	 Persist

Perspectives

•	 Express: new means to create.
•	 Connect: be able to create with others.
•	 Question: be able to use computation for posing ques-

tions and resolving them.

8

Spiral of creative thinking according to M. Resnick (2007).

http://web.media.mit.edu/~mres/papers/CC2007-handout.pdf

http://web.media.mit.edu/~mres/papers/CC2007-handout.pdf

9

In a similar direction, Beauchamp (2016) stresses the close relationship
between computational thought and the educational approach of “Problem
Based Learning”, since all problem solving has different phases: understanding
the problem, considering a design, executing it and checking the result.

Additionally, Resnick (2007) defends the close relationship between
computational thinking and creative thinking using the term “creative computing”
and emphasizes how children learn in the stage of early childhood education,
where frequently a learning process takes place with a common denominator:
imagine, create, play (experience), share, reflect and re-imagine. According to
Resnick, one of the best ways we have to help children and young people is to
be sure they have the opportunity to follow their interests, explore their ideas
and have tools to make their voices heard. It is not simply a question of teaching
them to use technology, but of offering them opportunities to use technology to
create things.

2.3. Beyond computing: Computational thinking
understood as a cornerstone in the emerging
paradigma STE(A)M

The idea of computational thinking has gained increasing interest in recent
years in parallel to the emergence of the STEM paradigm (Science, Technology,
Engineering and Mathematics). This has arisen as much from the growing
demand for professionals with profiles of a scientific, technological, engineering
and mathematical nature, as from new educational proposals that call for a
greater interrelation between these disciplines throughout schooling. In parallel,
we encounter the emergence of makerspaces in education, as well as a
commitment to promote the STEAM area, where the arts play a fundamental
and transformative role, which allows diversification of tasks and work to
be developed, being complementary and helping to express, connect and
understand the knowledge being studied.

When considering how computational thinking fits in the STEAM educational
environment, we want to emphasize both the opportunities offered by
computational thinking as an essential tool in the STEAM field and the opportunities
offered by the STEAM field as a context for developing computational thinking.
Computational languages and supports offer new opportunities for students to
face scientific, engineering and mathematical challenges, such as computational
modelling, simulating real-world situations in virtual environments, representing
mathematical abstractions, etc. In fact, one of the main documents of reference
at present in the STEAM field, the K-12 Next Generation Science Standards
(NRC, 2012), includes the use of computational thinking as one of the eight key
STEM practices. In addition, developing computational thinking may not only
help students to learn more STEAM content, but also to better understand the
role of computation in the STEAM professional field and its impact. For example,
Weintrop (2016) highlights how computational biology, based on data structures
and algorithms, is transforming the very way we think of biology as a science.

At the same time, however, learning in the STEAM field cannot only be enriched
by the development of students’ computational thinking, but also vice versa. The
contexts particular to the STEAM field (construction of scientific explanations
and mathematical models, design of engineering solutions, etc.) are especially

9

TO LEARN MORE

•	 Beauchamp, G. (2016). ICT and computing in the primary school. In Computing and
ICT in the Primary School: From pedagogy to practice (p. 252).

•	 Griffin et al. (2012). Assessment and Teaching of 21st Century Skills
http://www.springer.com/us/book/9789400723238

•	 Resnick, M. (2007). All I Really Need to Know (About Creative Thinking) I Learned (By
Studying How Children Learn) in Kindergarten. Proceedings of the 6th ACM SIGCHI
conference on Creativity & cognition, 1-6

http://www.springer.com/us/book/9789400723238

10

suitable for promoting and giving meaning to the use of computational languages,
and provide relevant phenomena that are addressed from the computational
perspective. In fact, it has often been the STEAM disciplines that have contributed
ways of thinking and reasoning from which computational thinking is nourished,
such as logical-mathematical thinking or investigative skills.

10

Example of emerging fields of scientific research based on computational support.

TO LEARN MORE

•	 NRC. (2012). A Framework for K-12 Science Education: Practices, Crosscutting
Concepts, and Core Ideas. Washington, DC.: National Academy of Sciences.

•	 Computer Science Teachers Association: Computational Thinking resources.
http://www.csteachers.org/page/CompThinking

•	 ISTE’s Computational Thinking Toolkit. https://www.iste.org/explore/
articleDetail?articleid=152

•	 Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky,
U. (2016). Defining Computational Thinking for Mathematics and Science
Classrooms. Journal of Science Education and Technology, 25(1), 127–147.

http://www.csteachers.org/page/CompThinking
https://www.iste.org/explore/articleDetail?articleid=152
https://www.iste.org/explore/articleDetail?articleid=152

1111

Wing, 2006 Stephenson and Barr, 2011 Selby and Woollard, 2013 Selby and Woollard, 2014

•	 Recursive thinking and
parallel processing.

•	 Reformulate a problem that
initially seems complicated
into a problem that we know
how to solve.

•	 Simplification, integration,
transformation, simulation.

•	 Choose a suitable
representation, or model the
most relevant aspects of a
problem in order to make it
manageable.

•	 Interpret codes as data and
data as codes.

•	 Use abstraction and
decomposition to address
large and complex tasks.

•	 Judge a design based on its
simplicity and elegance.

•	 Formulate problems in a
way that enables us to use a
computer and other tools to
help solve them.

•	 Logically organize and
analyze data.

•	 Represent data through
abstractions such as models
and simulations.

•	 Generate automatic solutions
through algorithmic thinking (a
series of ordered steps).

•	 Identify, analyze and
implement possible solutions
with the aim of achieving the
most efficient and effective
combination of steps and
resources.

•	 Generalize and transfer
the process of solving one
problem to a wide variety of
problems.

•	 The ability to think in
abstractions.

•	 The ability to think in terms of
decomposition.

•	 The ability to think
algorithmically.

•	 The ability to think in terms of
evaluations.

•	 The ability to think in
generalizations.

•	 A mental process.
•	 Abstraction.
•	 Decomposition.
•	 Heuristic reasoning.
•	 Logical thinking.
•	 Mathematical thinking.
•	 Thought focused on

engineering.
•	 Algorithmic design.
•	 Problem solving.
•	 Analysis.
•	 Evaluation.
•	 Generalization.
•	 Recursion.
•	 System design.
•	 Automation.
•	 Modelling, simulation and

visualization.

3. What aspects of Computational Thinking need to be promoted and
evaluated?

While there is no single definition of the core elements of computational thinking, in the specialized literature different proposals can be found that detail their
fundamental aspects.

12

REPRESENT COMPUTATIONAL
ABSTRACTIONS

PROCESS COMPUTATIONAL DATA
AND VARIABLES

AUTOMATE WITH COMPUTATIONAL
 ALGORITIONS

SEQUENCE COMPUTATIONAL
STEPS

IDENTIFY AND DELIMIT

CONSIDER MULTIPLE PATHS

BREAK DOWN AND SIMPLIFY

TEST, VALIDATE, DEBUG

CREATIVITY AND INGENUITY

TEAMWORK

AUTONOMY AND INITIATIVE

INTERACTION AND
COMMUNICATION

Characteristic processes of computational
thinking

Strategies for solving computational problems Transversal skills in computational contexts

Key aspects of Computational Thinking

TO LEARN MORE

•	 Wing, J. (2006). Computational Thinking. COMMUNICATIONS OF THE ACM. Vol. 49, No. 3. https://dl.acm.org/citation.cfm?id=1118215
•	 Stephenson, C., & Barr, V. (2011). Defining Computational Thinking for K-12. CSTA:-The Voice of K-12 Computer Science and Its Educators, 7(2).
•	 Selby, C. & Woollard, J. (2013) Computational Thinking: The Developing Definition. https://eprints.soton.ac.uk/356481/
•	 Selby, C. & Woollard, J. (2014) Refining and understanding Computational Thinking. https://eprints.soton.ac.uk/372410/1/372410UnderstdCT.pdf

Based on these different proposals, we present a list of key aspects to promote and that could be evaluated to help develop CT in school:

•	 Characteristic procedures of computational languages
•	 Strategies for solving computational problems
•	 Transversal skills in computational contexts

https://dl.acm.org/citation.cfm?id=1118215
https://eprints.soton.ac.uk/356481/
https://eprints.soton.ac.uk/372410/1/372410UnderstdCT.pdf

1313

3.1. Characteristic processes of computational
thinking

One of the principal aspects of CT is the use of computational languages. While
there are a large variety of languages (code languages, block, icons, Mixed-
Signal, etc.), some common denominators do exist. One of these denominators
is the processing of data and computational variables, understanding where
they come from, what their meaning is and how they can be used to generate
new data, as well as how to recognize patterns to organize this data. The
computational challenges faced by students in school often require working with
numerical data and its systematic treatment, identification of the variables that
allow us to describe and control a computational process, and the relationship
between these variables.

That is why we also say that these challenges require developing the ability
to represent computational abstractions of all kinds: conditions, patterns,
geometric relationships, algebraic relationships, etc., which are expressed
through code.

In fact, before programming with code, it is advisable for students to first represent
their ideas with pencil and paper, as well as through experiential games, and
then translate them into computational language.

In addition, one of the most common ways to represent and structure the
relationships between variables and the conditions that determine them is
through computational algorithms. This enables us to automate the operation
of a computer program or the behaviour of a robot, using loops, conditionals,
operators, variables and parameters, forming an algorithm to solve particular
cases of a general problem.

In turn, this depends on developing abilities related to sequencing computational
steps, knowing how to optimally order the instructions that make up a program
by using sequences, repetitions or parallelisms.

PROCESS COMPUTATIONAL
DATA AND VARIABLES

REPRESENT
COMPUTATIONAL
ABSTRACTIONS

AUTOMATE WITH
COMPUTATIONAL

ALGORITIONS

SEQUENCE
COMPUTATIONAL STEPS

14

When it is proposed to a group of children to design a small video game with
Scratch, one of the main challenges encountered is to define the movement of
the characters. This language allows us to define this movement from the Car-
tesian coordinates (X, Y) as well as from the polar coordinates (direction and
displacement). Depending on how they want to interact with the characters, the
children will have to choose which type of coordinates can be used as data in
their code.

For example, if they want to define the movement of a character that hits the
ends of the screen, the data that will be most useful to them is the direction ex-
pressed in degrees, whereas if they want to define the vertical fall of a character,
the data that will be most useful is the Y coordinate.

PROCESS COMPUTATIONAL DATA AND VARIABLES

Choose the coordinates that help us better define a movement in the plane

PRACTICAL EXAMPLE

15

We can propose to the children to identify flat geometric shapes in their
physical environment, so that they can photograph them and describe them
mathematically with the help of the Scratch programming environment.

To do this, they can position one of the photographs as a backdrop, and program
a character so that with one click, they can trace the outline of the shape that
appears.

This requires a process of abstraction where data and variables come into play
including the length of the sides of the polygon and the angle that the character
must rotate on each vertex.

REPRESENT COMPUTATIONAL
ABSTRACTIONS

Reproduce the polygons we see around us

PRACTICAL EXAMPLE

16

Continuing with the previous example, in the event that the shape is a regular
polygon, the children can find the relationship between the angle of rotation and
the number of sides of the polygon, relating the two parameters with an operator,
which in this case will be division.

They will thus be able to construct a general algorithm to draw the outline of any
regular polygon through the relationship that states that each angle of rotation is
360 divided by the number of sides of the polygon.

AUTOMATE WITH COMPUTATIONAL ALGORITIONS

Regular polygons: how can we generalize their mathematical expression?

PRACTICAL EXAMPLE

17

If we propose to a group of children to program a robot, or a character that has
to follow a specific itinerary, they will have to define a sequence of commands or
instructions for this character to follow.

If the two instructions available are “Advance 100 steps” (movement of trans-
lation) and “Turn 90 degrees to the right” (rotation movement), the children can
verify that the order in which the sequence of instructions is applied does not
lead to the same result, and that, therefore, the instructions given to the robot do
not fulfil the commutative property.

SEQUENCE COMPUTATIONAL STEPS

The instructions that are given to a robot do not fulfil the
commutative property

PRACTICAL EXAMPLE

18

3.2. Strategies for solving computational
problems

In parallel to the mastery of key elements of computational languages (their
components, structures, rules, etc.), CT has a close relationship with the way in
which people face problem solving.

Problem-solving strategies, in fact, have been widely discussed in the educational
literature under different umbrellas (problem-solving skills, critical thinking, etc.).
However, the skills to develop these strategies are not universal and separate
from the contexts in which they are applied, and, therefore, they take on a very
particular meaning when it comes to confronting and solving computational
problems.

Thus, computational thinking implies the ability to identify and delimit a
computational problem to be solved, analyzing its possible solutions and
optimizing the steps and resources. When this is done, we must also consider
multiple paths, understanding that there may be several valid paths or solutions.

Problem solving also involves the ability to break down and simplify, by
modularizing and dividing complex situations into simpler ones. Last, it is also
necessary to test, validate and debug solutions iteratively, learning from the
errors identified, since in computation, debugging involves searching for the
error and understanding what is not working.

IDENTIFY AND DELIMIT CONSIDER MULTIPLE
PATHS

BREAK DOWN AND
SIMPLIFY

TEST, VALIDATE, DEBUG

19

When a group of children find themselves faced with the challenge of programming
a robot that has to move from one place to another, it is advisable for them to
reflect upon the problem they are facing in advance. For example, it is not the
same thing to define a movement based on a starting point and a point of arrival,
as arriving at a point from a starting point and having made a movement.

It is necessary, therefore, to delimit exactly what the challenge is that they have
to address, and identify possible ways to solve it.

IDENTIFY AND DELIMIT

We ask ourselves what we have and what we need before we start
programming a programmable educational robot (Bee-Bot, Cubeto, others)

PRACTICAL EXAMPLE

20

A very common activity designed to reflect on the need for computational
language to give clear instructions to a robot is to emulate the programming of a
robotic arm that has to build a tower of cups with a given structure.

Divide the children or young people into teams. Some of these can be
programmers, charged with writing the program that will allow the robotic arm to
build the structure, using a previously agreed-upon set of symbols (indicating to
move left, right, up, down, rotate the cup, etc.).

Once they have written the program, another group of children or young
people who had not participated in the writing, will execute the instructions
and physically construct the tower with real cups. The programmers will have
necessarily discussed and reflected on the different ways of building the tower,
on what order to position the different cups and the advantages of each option.

CONSIDER MULTIPLE PATHS

Build a tower with cups (I)

PRACTICAL EXAMPLE

21

In the activity described in the above example, the children that wrote the
instructions to build the tower test, validate and correct the arrangement of the
symbols iteratively to achieve the requested structure.

Once this has been done, they can optimize the solution, with an abstraction
process, by introducing computational concepts such as loops and variables.

A possible activity to work on debugging could be to provide an example of a code
that does not do what it should do, and have the children analyze this code in
order to search for the error, thus doing an exercise that involves understanding
why a program does not work and correct it to achieve a possible solution.

TEST, VALIDATE, DEBUG

Build a tower with cups (II)

PRACTICAL EXAMPLE

22

Children often want to computationally reproduce complex behaviours or
phenomena that require previous simplification based on translating a large
challenge into several small ones.

Consider, for example, the composition of movements. A complex movement
can be composed of several simpler ones, such as a diagonal movement that
may be made up of a vertical and a horizontal one.

BREAK DOWN AND SIMPLIFY

Break down a complex movement into two simpler ones

PRACTICAL EXAMPLE

23

3.3. Transversal skills in computational contexts

In recent years, many proposals have been made to formulate transversal
competencies and/or competencies of the 21st century, which encompass
classical notions of HOTS (Higher Order Thinking Skills), also called soft skills,
and other aspects to take into account the demands of the dynamics—global
and profoundly digital of today’s society. As with problem solving, the cognitive
literature seems to indicate that every competence is developed and expressed
in a specific way according to the context, and therefore, the question is not so
much which skills are transversal in the abstract or disassociated from school
content, but what meaning they take on in computational contexts like those
discussed in this document.

Thus, we speak of transversal skills such as creativity, teamwork, personal
autonomy and initiative or interaction and communication not as transversal
competencies to develop “apart” from computational thinking, but within
computational thinking. Put another way: it is not necessary to focus on teaching
creativity or teamwork in itself, but rather to teach computation by developing
creativity and teamwork.

CREATIVITY AND
INGENUITY

TEAMWORK AUTONOMY AND INITIATIVE INTERACTION AND
COMMUNICATION

24

When a group of children have a robot with wheels and a light sensor, which
must be guided using a coloured line drawn on the ground, there are several
creative ways to face the challenge.

For example, they can place the robot on the margin of the line (boundary
between light and dark) so that the robot moves forward in small sections,
turning toward the dark colour when the sensor detects brightness and turning
toward the light colour when the sensor detects darkness. To make each turn,
only one of the two wheels moves and advances; instead of moving the two
wheels in a straight line, each one moves alternately.

To work on creativity it is important to design workshops where different materials
are used, let children express their voice, and let them follow their interests.
Encourage them to invent poems, stories, games and robots based on what
they like, and learn to reuse and mix projects and solutions and freely express
their ideas.

CREATIVITY AND INGENUITY

Think of ingenious solutions to make the robot follow a line

PRACTICAL EXAMPLE

25

The development of computational programs at a professional level often
requires teamwork, and this can be reproduced analogously in the classroom.

For instance, we can propose to a group of children the challenge of creating
a story by working collaboratively. Initially, the general storyline is agreed upon
among the whole class, but then the children are divided into groups and each
one of these groups creates a part of the story, writing a script and programming
its digital animation with Scratch.

To view the final result, the students set the computers up in a row and start their
programs at the same time, so that characters appear to jump from one screen
to another. Coordination between groups must allow both the argumentative
coherence of the parts of the story and the coherence of the programs,
guaranteeing the synchronization of events based on the agreed timeline from
the moment the programs start running.

TEAMWORK

Create a collaborative multimedia story

PRACTICAL EXAMPLE

26

With the final goal being for each work group to create a video game that we can
play together, different video game creation tools are presented in the classroom,
ranging from the simplest to the most complex: Twine, Scratch, Kodu, Stencyl
and Unity. The learning curve of each application is different. This means that if
a group chooses to develop their project with a tool that has a certain degree of
complexity, they will have to allocate a significant portion of their time to learning,
on their own, the operation of the tool.

Experience tells us that approximately a third of the groups decide to develop the
video game with a tool that requires a high degree of autonomy to find solutions
to the problems that will arise in the course of development of their project.

AUTONOMY AND INITIATIVE

Decide on the degree of difficulty we want to incorporate when we design a
video game

PRACTICAL EXAMPLES

27

In many workshops and projects that are carried out in the classroom it can be
quite valuable, at a given time, for a student to explain a finding she made to her
classmates. Similarly, at the end of a workshop she could present the results
and process to the class (or to the whole school), thus documenting her work.
Still another possibility would be to have the children write down “advice” they
would give to a classmate if they had to repeat the workshop.

For example, in an activity called “Child-bot” (child who runs a program as if he
was a robot), children can write the codes themselves to give the child-robot
instructions in what can be called the language of robots (a set of agreed-upon
symbols). The children doing the programming must be able to communicate with
their classmates-robots, giving them instructions in a clear and understandable
way.

INTERACTION AND COMMUNICATION

Think about how to give the clearest and most understandable instructions
to the Child-bot

PRACTICAL EXAMPLE

28

4. How can we approach
Computational Thinking in teacher
training?
Due to its being an emerging field, computational thinking still plays an
insignificant role in initial teacher training carried out in universities. Some studies
have identified this shortcoming in teacher training (Bower & Falkner, 2015).
Addressing computational thinking in initial teacher training can be conceived
as an integration of what has been called the didactic-technological knowledge
of content (Shulman, 2005), usually called TPCK for its acronym in English
(also known as the TPACK model, Technological Pedagogical and Content
Knowledge). TPCK can be understood as “the ability of teachers to transform their
knowledge of content into forms that are didactically powerful and yet adapted to
the variety presented by their students in terms of skills and background”.

As with other teacher training processes, this training must be understood at
different levels, which are combined and interrelated throughout the learning
progression of future teachers during their initial training.

If the ultimate goal of teacher training in computational thinking is for them
to be capable of generating learning situations with their future students, it is
crucial that the teachers being trained experience firsthand the learning and
development of their own computational thinking: a knowledge of existing tools
and computational languages, the development of reasoning strategies and
problem solving, etc. This is only possible if future teachers themselves face the
challenge of solving computational problems as students / learners: program a
robot, design a video game or interactive story, develop an app, or also solve
computational problems “unplugged”. Therefore, we consider that a necessary
first level in teacher training is the user level. It is not intended at this level of
training that the future teacher consider how to help another person (or their
potential students) develop computational thinking, but rather that they raise
questions such as how to use a particular computational language to achieve
some of the proposed goals (the robot, the video game, the app, etc.).

Only after a person has experienced the fact of facing a computational challenge
by designing a small program, developing a code, etc., is it possible to reflect
on what they had to do. We understand, therefore, the reflective user level as
that level where the future teacher is reflecting on what they have done when
they had to face a computational challenge: what reasoning did they use? What
elements of computational language did they use and why? This is an exercise
in metacognition in which the 12 key aspects discussed in the previous section
are particularly relevant, since they allow us to reflect on our own actions in a
structured way.

Model TPCK, or TPACK, Technological Pedagogical and Content Knowledge (Koehler, Mishra and
Cain, 2013)

TO LEARN MORE

•	 Bower, M. & Falkner, F. (2015) Computational Thinking, the Notional Machine, Pre-ser-
vice Teachers, and Research Opportunities. Proceedings of the 17th Australasian
Computing Education Conference, 27-30.

•	 Koehler, M. J., Mishra, P., & Cain, W. (2013). What is technological pedagogical con-
tent knowledge (TPACK)? Journal of Education, 193(3), 29-37

•	 Koehler, M. J., Mishra, P., & Cain, W. (2015). ¿Qué son los Saberes Tecnológicos y
Pedagógicos del Contenido (TPACK)?. Virtualidad, Educación y Ciencia, 10 (6), pp.
9-23. http://www.punyamishra.com/wp-content/uploads/2016/08/11552-30402-1-SM.
pdf

LICENCE: “Reproduced by permission of the publisher, © 2012 by tpack.org”

http://www.punyamishra.com/wp-content/uploads/2016/08/11552-30402-1-SM.pdf
http://www.punyamishra.com/wp-content/uploads/2016/08/11552-30402-1-SM.pdf

29

Only after having reflected as a user does it make sense to situate future teachers
before the challenge of being actual teachers, that is, deciding what they want
to teach, what they hope their students will learn about computational thinking,
what resources and strategies to select, etc. In the initial training of teachers
there are different moments for this process: in practicums and school stays, in
university – school collaboration activities (visits, workshops fairs, etc.), but also
having future teachers simulate small classroom situations between peers, the
so-called “microteaching”, where some act as teachers and others as students.

Finally, only after having had first-hand experience and having functioned as a
teacher is it possible to reflect on the teaching and learning process related to
computational thinking, that is, to become a reflective teacher. This not only
involves asking what and how to teach but why, regarding the difficulties and
casuistry of each specific educational context and the strategies to approach
them.

The proposal of these four key levels serves to guide what can be the learning
progression of future teachers in computational thinking. On the one hand, a
learning progression can be understood as the progressive deepening within
the same level. For example, at the user level, teacher training can be focused

on learning computational languages and strategies for solving increasingly
sophisticated computational problems. In the case of robotics, a possible
example would be to introduce the Bee-Bot robots (https://www.bee-bot.us/)
first, followed by Lego WeDo robots (https://education.lego.com/en-us), and
then continue with Edison robots (https://meetedison.com/), and/or the mbots
(https://www.makeblock.com/steam-kits/mbot), and/or Lego Mindstorms (https://
education.lego.com/en-us)

At the same time, a progression can be understood as the transition between
levels, so that teachers in training are first users, then reflective users, then
teachers and finally become reflective teachers. Thus, for example in a training
sequence it would be beneficial to propose that they first create a small video
game with Scratch, then reflect on what they learned, followed by a workshop
(with other teachers in training or with students). The training sequence will
conclude with a reflection on what they learned when they had to teach about
this, what difficulties their “students” presented and how they could help to
overcome them and/or avoid them.

This dual way of understanding the progression of learning in teacher training
(becoming increasingly more expert at each level and being able to progress
towards the next level) allows us to situate each training activity, and thus devise
training itineraries that may be applicable to other teacher training contexts.

Levels of progression of future teachers in learning computational thinking. Stages in the progression of the expertise of teachers in computational thinking.

https://www.bee-bot.us/
https://education.lego.com/en-us
https://meetedison.com/%29
https://www.makeblock.com/steam-kits/mbot
https://education.lego.com/en-us
https://education.lego.com/en-us

30

PRACTICAL EXAMPLE:

Video game design workshop to learn how to
program from small challenges

Video game design workshop to learn how to program from small challenges.
In order to learn and master the Stencyl programming language, future teachers
must create a video game based on the popular video game “Galaga”. The
training sequence begins with a brief introduction on the basic operation of the
tool: the interface, operating rules, pieces of code, etc. Once this programming
language has been presented, small challenges are presented to the participants
that have to be resolved, with increasing difficulty. Periodically, they join together
to solve the challenges that have emerged. At the end of the process participants
have acquired a strong enough knowledge of block programming to allow them
to both go into greater depth in more sophisticated programming languages in
the future, or to begin to ask themselves how this learning they have experienced
can in turn be taught by them in the future.

PRACTICAL EXAMPLE:

Analyzing a program after having designed it

We can ask a group of teachers in training who have previously participated
in an activity where they had to do elaborate a small computer program (for
example, with Scratch), to think about why they followed a series of steps, com-
paring whether all the groups had done it the same way, what they believe they
could have done differently, etc. These types of questions lead them to consider
not only what they have done, but also the ideas behind their decisions: which
concepts, practices and perspectives. In this example, participants are asked to
justify why they programmed in a certain way, explaining what would happen if
they had not included each of the parts of the programming block.

USER LEVEL

REFLECTIVE USER LEVEL

31

PRACTICAL EXAMPLE:

Microteaching among peers on computational
thinking

After having become familiar with the Scratch programming language (user
level) and after having reflected on which aspects of computational thinking are
at work when children create a small application using this language (reflective
user level), a proposal is made to some teaching degree students to design and
implement in front of their classmates a short 20-minute presentation teaching
them a particular aspect of Scratch. Thus, the participants in charge of doing
this presentation, which we call microteaching, have to think about the learning
objectives they are considering, what steps to follow, how to manage the work of
the group, what examples they will use, etc. This will enable them, subsequently,
to reflect on what worked best and what could be improved in their presentation.

TEACHER LEVEL

PRACTICAL EXAMPLE:
Post-evaluation after having devised
Computational Thinking activities in an out of
class intervention with children

In a context of an action with real children, a group of students in training can
implement proposals they have designed to be developed with children; for
example, using a robot or having the children themselves receive orders and act
as if they were robots. These students not only have the challenge of carrying
out the activity itself, but must also gather evidence of the learning done by
the children that participated: conversations among children, critical situations,
etc. Once this evidence is collected, the teachers in training meet back at the
university to discuss their experience. Through the evidence gathered and a
grid of key aspects of computational thinking (see previous section), participants
discuss what kind of learning they may have promoted among the children who
participated in the workshop, thus reflecting on their practice.

REFLECTIVE TEACHER LEVEL

TO LEARN MORE

•	 BBC Bitesize https://www.bbc.com/education/guides/zp92mp3/revision
•	 Bocconi et al., (2016). Developing Computational Thinking in Compulsory Education.

Implications for policy and practice. JCR Science for Policy Report. European Comis-
sion. http://publications.jrc.ec.europa.eu/repository/bitstream/JRC104188/jrc104188_
computhinkreport.pdf

•	 CAS Barefoot https://barefootcas.org.uk/barefoot-primary-computing-resources/con-
cepts/computational-thinking-further-examples/

•	 Computing at School resources: https://www.computingatschool.org.uk/
•	 Computer Science Without a Computer: https://csunplugged.org/en/, http://csedweek.

org/unplugged/thinkersmith
•	 Google Education Computational Thinking microsite https://edu.google.com/resources/

programs/exploring-computational-thinking/
•	 Google CT for Educators

https://computationalthinkingcourse.withgoogle.com/course?use_last_location=true
•	 Kiki Computational Thinking Games http://games.thinkingmyself.com/

https://www.bbc.com/education/guides/zp92mp3/revision
http://publications.jrc.ec.europa.eu/repository/bitstream/JRC104188/jrc104188_computhinkreport.pdf
http://publications.jrc.ec.europa.eu/repository/bitstream/JRC104188/jrc104188_computhinkreport.pdf
https://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/computational-thinking-further-examples/%20
https://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/computational-thinking-further-examples/%20
https://www.computingatschool.org.uk/
https://csunplugged.org/en/
http://csedweek.org/unplugged/thinkersmith
http://csedweek.org/unplugged/thinkersmith
https://edu.google.com/resources/programs/exploring-computational-thinking/
https://edu.google.com/resources/programs/exploring-computational-thinking/
https://computationalthinkingcourse.withgoogle.com/course?use_last_location=true
http://games.thinkingmyself.com/

32

Before finishing, some practical
advice:

•	 You do not have to know everything before you start: Of course something
you learn is that you do not need to know everything about a particular tool.
It is necessary to face a challenge or problem, and propose and develop a
possible solution. However, it is obvious that when this challenge or problem
is worked on in a classroom there will be multiple ideas and paths that
students will explore and, in the face of children’s doubts, the teacher will
have to learn to answer, “explore, investigate”, and to raise questions that
make them think, and that guide them toward discovering and overcoming
the small obstacles they may encounter.

•	 Collaborative challenges should be considered: It is essential that
students work in teams and learn to collaborate, communicate, and manage
problems and solutions within the framework of teamwork.

•	 The spaces where the activities are to be carried out must be taken
into account: It is very important that teachers and future teachers be
aware of the spaces where the workshops and activities will be carried out.
To ensure the success of a workshop, it is crucial that the spaces be suitable
for working in teams of children, that the spaces lend themselves to sharing
projects and ideas, and that the equipment be functional.

•	 The equipment must be ready before beginning the activity: The
equipment must be ready before beginning the activity. It is important to
have tested the equipment and technologies prior to the work session with
the boys and girls, so that when the workshop begins the materials are
ready for use; this way we will avoid technology-related problems (there
is no Wi-Fi, the Wi-Fi doesn’t work, there is no Bluetooth, this plugin isn’t
installed, it doesn’t work with this browser, etc.).

•	 If in spite of everything something does not work as expected, do not
worry; an error, and knowing how to solve it, is part of the challenge!

pecofim.udg.edu

https://pecofim.wixsite.com/pecofim

